Intra-tooth isotopic profiles of canines from extant *Hippopotamus amphibius* and late Pliocene hippopotamids (Shungura Formation, Ethiopia): Insights into the seasonality of diet and climate

Antoine Souron a,⁎, Marie Balasse b, Jean-Renaud Boisserie a, c

a Institut de Primatologie, Paléontologie Humaine: Évolution et Paléoenvironnements (UMR 7262), CNRS & Université de Poitiers, Bât. B 35-40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France

b Archéozoologie, archéobiochimie: sociétés, pratiques et environnements, UMR 7209, CNRS/Museum National d'Histoire Naturelle, Paris, France

c Centre Français des Études Éthiopiennes (USRF 3137), CNRS & Ministère des Affaires Étrangères, Ambassade de France en Éthiopie, P.O. Box 5554, Addis Ababa, Éthiopie

ARTICLE INFO

Article history:
Received 15 September 2011
Received in revised form 9 May 2012
Accepted 14 May 2012
Available online 21 May 2012

Keywords:
Hippopotamidae canine
Seasonality of climate and diet
Tooth enamel
Serial carbon and oxygen isotope analyses
Shungura Formation

ABSTRACT

We investigated the potential use of intra-tooth variations of stable carbon and oxygen isotopes in hippopotamid canines to retrieve signals of seasonality in continental contexts. A high-resolution serial isotope analysis of enamel was performed on both lower and upper canines of one extant common hippopotamus from the Sarh region (Chad). We discussed three methodological points: canine growth rates, optimal sampling resolution, and record of seasonality within hippopotamid canine enamel. In this 21-year-old specimen, growth rates of 39.1 mm/year and 31 mm/year were established for the lateral part of lower and upper canines respectively. Our results suggest that the optimal sampling resolution to capture the seasonality is ca. 1–3 mm. Seasonal changes were observed in both δ13C and δ18O values, indicating an important C4 component in the diet during the rainy seasons (up to 50%) and a diet dominated by C3 grasses during the dry seasons (around 70%). Next, we performed a similar test on two fossils from the Shungura Formation (south-western Ethiopia). Seasonal variations in δ13C of the diet were also observed in the fossil specimens and the palaeoenvironmental implications are discussed. Preliminary conclusions from the δ18O and δ13C sequences seem consistent with a rise of seasonality during the Pliocene, synchronous with the global aridification and opening of the environments.

© 2012 Elsevier B.V. All rights reserved.