Built to Bite: Feeding Kinematics, Bite Forces, and Head Shape of a Specialized Durophagous Lizard, *Dracaena Guianensis* (Teiidae)

VICKY SCHAERLAEKEN¹, VERONIKA HOLANOVA², R. BOISTEL³, PETER AERTS¹, PETR VELENSKY⁴, IVAN REHAK⁴, DENIS V. ANDRADE⁵, AND ANTHONY HERREL⁶*
¹Department of Biology, University of Antwerp, Antwerpen, Belgium
²Department of Zoology, Charles University, Praha, Czech Republic
³IPHEP-UMR CNRS 6046, UFR SFA, Université de Poitiers, Poitiers, France
⁴Prague Zoo, Praha, Czech Republic
⁵Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
⁶UMR 7179, Muséum National d'Histoire Naturelle, Département EGB, Paris, France

ABSTRACT

Most lizards feed on a variety of food items that may differ dramatically in their physical and behavioral characteristics. Several lizard families are known to feed upon hard-shelled prey (durophagy). Yet, specializations toward true molluscivory have been documented for only a few species. As snails are hard and brittle food items, it has been suggested that a specialized cranial morphology, high bite forces, and an adapted feeding strategy are important for such lizards. Here we compare head and skull morphology, bite forces, and feeding kinematics of a snail-crushing teiid lizard (*Dracaena guianensis*) with those in a closely related omnivorous species (*Tupinambis merianae*). Our data show that juvenile *D. guianensis* differ from *T. merianae* in having bigger heads and greater bite forces. Adults, however, do not differ in bite force. A comparison of feeding kinematics in adult *Dracaena* and *Tupinambis* revealed that *Dracaena* typically use more transport cycles, yet are more agile in manipulating snails. During transport, the tongue plays an important role in manipulating and expelling shell fragments before swallowing. Although *Dracaena* is slow, these animals are very effective in crushing and processing hard-shelled prey. *J. Exp. Zool. 00:1–11, 2012. © 2012 Wiley Periodicals, Inc.*

Grant sponsor: Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen); Grant sponsor: Center for Nanoscale Systems (CNS); Grant sponsor: National Science Foundation; Grant number: ECS-0335765.
Correspondence to: Anthony Herrel, Département d’Ecologie et de Gestion de la Biodiversité, 57 rue Cuvier, CP 55, 75231, Paris, France. E-mail: anthony.herrel@mnHN.fr
Received 26 December 2011; Revised 3 March 2012; Accepted 5 March 2012
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jez.1730